Pure injective modules relative to torsion theories
نویسندگان
چکیده
منابع مشابه
Pure-injective modules
The pure-injective R-modules are defined easily enough: as those modules which are injective over all pure embeddings, where an embedding A → B is said to be pure if every finite system of R-linear equations with constants from A and a solution in B has a solution in A. But the definition itself gives no indication of the rich theory around purity and pure-injectivity. The purpose of this surve...
متن کاملSuperdecomposable pure-injective modules
Existence of superdecomposable pure-injective modules reflects complexity in the category of finite-dimensional representations. We describe the relation in terms of pointed modules. We present methods for producing superdecomposable pure-injectives and give some details of recent work of Harland doing this in the context of tubular algebras. 2010 Mathematics Subject Classification. Primary 16G...
متن کاملRanks of modules relative to a torsion theory
Relative to a hereditary torsion theory $tau$ we introduce a dimension for a module $M$, called {em $tau$-rank of} $M$, which coincides with the reduced rank of $M$ whenever $tau$ is the Goldie torsion theory. It is shown that the $tau$-rank of $M$ is measured by the length of certain decompositions of the $tau$-injective hull of $M$. Moreover, some relations between the $tau$-rank of $M$ and c...
متن کاملGorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules
In this paper we study some properties of GC -projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC -projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.
متن کامل–supplemented Modules Relative to a Torsion Theory
Let R be ring and M a right R-module. This article introduces the concept of τ −⊕-supplemented modules as follows: Given a hereditary torsion theory in Mod-R with associated torsion functor τ we say that a module M is τ −⊕-supplemented when for every submodule N of M there exists a direct summand K of M such that M = N +K and N ∩K is τ−torsion, and M is called completely τ −⊕-supplemented if ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Algebra
سال: 2014
ISSN: 1314-7595
DOI: 10.12988/ija.2014.429